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A method is presented for the numerical finite-difference solution of the equations of 
motion for laminar, incompressible steady-state flow in both two and three dimensions. 
The complete Navier-Stokes equations are transformed and expressed in terms of vorticity, 
scalar, and vector potentials. The transformed equations are solved iteratively. The method 
is evaluated by solving the NavierStokes equations in a plane groove region. Numerical 
solutions of three-dimensional flows in a square duct and in a rectangular cavity formed 
in one wall of a square duct are presented. The results obtained are compared with the 
experimental results and other calculations. 

1. INTRODUCTION 

A suitable method for the numerical solution of steady-state equations for laminar 
incompressible flows both in two and three dimensions consists of a transformation 
of the complete Navier-Stokes equations in terms of a vector vorticity, a vector 
potential, and a scalar potential. The approach is based on work of such authors as 
Aziz and Hellums [I], Mallinson and de Vahl Davis [2], Holst and Aziz [3] to mention 
a few, for the numerical solution of the three-dimensional equations of motion for 
laminar natural convection in a confined region. 

The main difficulty encountered by earlier users of this approach was in the setting 
of the boundary conditions on the vector potential in the most convenient form. 
This difficulty is in direct contrast to the two-dimensional approach of the stream 
function-vorticity method, where finding restrictions on the stream function on the 
boundary is relatively simple. The specification of boundary conditions on both 
scalar and vector potentials has been fully discussed by Hirasaki and Hellums [4, 51. 

This approach has been used to solve laminar natural convection flows in a confined 
region, but in this paper it is used to solve more difficult problems in regions with inlet 
and outlet flows. 
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2. THE EQUATIONS OF MOTION 

The dimensionless equations describing a viscous incompressible laminar steady- 
state flow in vector form are 

v*v =o, 
(v . v)v = -VP + (l/Re)V’V, 

(2.1) 

(2.2) 

where in Cartesian coordinates, V = (u, u, W) is the velocity, P is the pressure, and 
Re = Lp,JJ,,/p,, is the Reynolds number, L, p. , U,, , and p0 are representative length, 
density, velocity, and viscosity, respectively. Taking the curl of Eq. (2.2) gives 

(V * V)S - (5 . V)V = V2g/Re, (2.3) 

where !Z, = V A V is the vorticity. To satisfy Eq. (2.1) identically the scalar potential, 
@, and the vector potential, A, are introduced through the equation 

V = -V@+VAA. (2.4) 

A unique vector potential A, within the gradient of an arbitrary harmonic function, 
exists such that 

V.A=Q (2.5) 

as already demonstrated in [5]. Taking the divergence of Eq. (2.4) gives 

and the condition 

y4@=-V.V=O 

aqan = -n + V 

(2.6) 

is chosen on the boundaries, where n is a unit vector normal to the boundary at each 
point. Equation (2.6) has a solution if and only if 

j- V2b,dV=l v.v@dV=/ V@*dS=I (a@/an)dS=o, (2.7) 
R R s s 

where S denotes the surface enclosing the volume R. In this case a solution is obtained 
to within an arbitrary constant but since the gradients of the scalar potential only are 
required, the arbitrary constant is irrelevant, It should be noted that for problems 
with no inflow and outflow, V = 0 on all the boundaries so that (2.6) has the trivial 
solution 0 = 0 and hence the scalar potential is not required for such problems. 

By taking the curl of Eq. (2.4) and applying (2.5) a differential equation for the 
vector potential is derived as 

V2A = -g. cw 
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Boundary Conditions 

The normal velocity components are assumed to be known and these values are used 
in the normal derivatives of the scalar potential on the boundary. 

The boundary conditions on the vector potential A are chosen such that the 
tangential components of A are equal to zero and the condition on the normal 
component is then determined by the solenoidal condition, V . A = 0. For a flat 
boundary the conditions become 

&in/an = 0, At = 0. 

By this choice the normal velocity to the surface is determined by -a@/an and is not 
altered by the vector potential as can be seen from (2.4). In addition, it has been shown 
in [4, 51 that with the above boundary conditions the vector potential is unique. 

Having dealt with normal velocities on the boundaries, the tangential velocities, 
which are usually zero on the boundaries, are used in the setting up of the boundary 
conditions on the vorticity. They are incorporated appropriately in the components of 
the vorticity, 5 = V A V, where V is calculated from (b and A by (2.4). 

3. FINITE-DIFFERENCE APPROXIMATIONS 

An interlaced uniform mesh is used. A diagram to illustrate the coordinate systems 
for each variable is shown in Fig. 1. The choice of the interlaced mesh system was 

FIG. 1. *-points are at the center of basic fluid elements and these are the scalar potential points. 
l-points are for the Al and & ; 2-points are for the Aa and & ; 3-points are for the A, and rF, . @ 
points are for the axial velocity, w; + points are for the transverse velocity v; and f-points are for 
the vertical velocity u. 

found necessary mainly to cope more easily with the derivative type of boundary 
conditions on the variables involved. The system enables the walls to lie midway 
between the last or first two mesh points in each direction so that the central finite- 
difference scheme for the gradient of the variable can be applied. In this way the 
truncation error, introduced as a result of the finite-difference approximation of the 
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derivative, a@/&, on the boundary has the leading term reduced from &h%JW/a? to 
(l/24) haa3@/W with the interlacing mesh system, where h is the mesh spacing. 

The krite-difference approximations for the x-component of the vector vorticity 
equations will only be discussed. The other components are similar. Mesh point 
variables are denoted by (Z, J, K) and the notation is used in which, for instance, 
@(I - 1) represents @(I - 1, J, K). The x-component of the vorticity equation 
from (2.3) is 

( 
a251 + 3% + as 

I/ 
at1 ais at1 --- 

ax2 ay a9 Re=u~-t-“ay-l-W~ 

To approximate the convection terms, namely 

awx) + 4awY~ + wuw, (3.2) 

at the 5, points, the partial derivatives are replaced by their finite-difference equivalents 
half a mesh length upstream of & points. Such an “upwind difference” technique has 
been used extensively since its introduction by Courant et al. [6], also see, for example, 
Hellums and Churchill [7] and Gosman et al. [8]. The method is required to stabilize 
the numerical iterations for higher Re (say 250). The resulting difference equations 
are diagonally dominant and this helps to promote numerical stability. At lower Re 
the convection terms are small compared with the diffusion terms so the upwind 
differencing has little effect at these Re. Thus in the first term of (3.2) with dx = 
X If1 -x,, 

(4 UA” > 0, a.$,/ax is replaced by (& - &(Z - l))/dx, 

(‘3 UA” < 0, a&/ax is replaced by (&(I + 1) - &&Ix, 

and the other terms follow similarly. Here the superscript AV indicates the velocity 
at the & points, determined by the average over the immediate neighboring points 
where u is evaluated explicitly in the interpenetrating mesh. Thus with the labeling 
used in the program 

uAV = (u(J + 1, K + 1) + u(K + 1) + u(J + 1) + u(Z - 1, J + 1) + u 
+ u(Z - 1, J + 1, K + 1) + u(Z - 1, K + 1) + u(Z - 1))/8. 

With the above schemes, the approximation to (3.2) gives 

Convection terms = -Cd,, + C,[,, + C&,, + CF.&, 

+ G&H + G&i? + G&w 
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where P, N, S, F, H, E, and Ware as displayed in Fig. 2; and 

C, = (I UAv I - UAV)/2Ax, C, = (I UAv I + UAV)/2Ax, etc. 

G =Gi-c.E-kcF+c,-l-c,i-c,, 

where all the C’s are now nonnegative. The source terms 

are represented at the & points by average values over immediate neighbors where 
the values are explicitly evaluated. Thus (3.3) is approximated as 

g,(au/ax)“” + g,““(au/ay)“” + g,““(au/az)“” 

where for example 

(au/ax)*” = (u(J+ l,KS- l)+u(K+ l)+U(J+ l)-tU-#(Z- 1,.Z+ 1,Kfl) 

- u(Z - 1, K + 1) - u(Z - 1, J + 1) - u(Z - 1))/4Ax, 
and 

g” = (E,(J + 1) + &U - 1, J + 1) + 5, + 5&Z - w4, 

and the other terms similarly. It is possible to leave the g1 term of (3.3) as an unknown 
in this g1 equation. However the difference equations would not necessarily remain 

x 

k 
L 

L 

FIG. 2. The nodal points surrounding any point P. 

diagonally dominant and it seems reasonable to leave all the source terms together. 
Thus all the terms in (3.3) were treated as source terms, evaluating them from current 
values in the iteration cycle. As for the diffusion terms on the L.H.S. of Eq. (3.1) 
a conventional central difference scheme is used on the Laplacian. After some 
rearrangement the finite-difference equation for the & equation becomes 
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where M takes the values of E, W, F, N ,..., and 

DN = C, + (l/Re k?), Ds = C, + (l/Re dx”) etc. 

and S, is the finite-difference representation of the expression in (3.3). All the D’s 
are now strictly nonnegative from the upwind differencing. 

The finite-difference equivalents of the vector potential equations and the scalar 
potential equation are simple, just being Poisson and Laplace equations, and will not 
be discussed here. Representations of the boundary conditions for the scalar and vector 
potentials are straightforward too. Boundary conditions on the vorticity are derived 
from the definition P = V A V. Unlike the stream function-vorticity method, where 
the vorticity is expressed in terms of the stream function, it is most convenient with 
the vector potential method to express the vorticity in terms of the velocities. 

Consider, for instance, the vorticity 

on a plane z = 0. Since all the components of the velocities are zero, aw/@ = 0 and 
with the mesh system used, &(x, y, 0) may be approximated by 

6%x, Y, 0) = -e%, Y, P$ - e, Y, @))/3h. (3.4) 

The leading truncation error is of order h2. This one-sided approximation is necessary 
because the velocity components outside the boundary are not known. However, 
when the velocity components on the boundary are known and are required to. calcu- 
late the vorticity on the boundary, the values of the velocity on the boundary must be 

/ 
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FIG. 3. A reentrant comer at point C. 
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used. A reentrant corner shown in Fig. 3 is an example of this situation. The arrows 
show the velocity components to be used in the approximation of the velocity gradient 
at the illustrated point. For instance care has to be taken in calculating the values of @ 
at the points like 7 and 8 shown in the diagram. Two values are required at point 6. 
One to satisfy the boundary condition between points 6 and 8 and the other to satisfy 
the boundary condition between points 6 and 7. 

4. GENERAL SOLUTION PROCEDURE 

The numerical solution of @ equation (2.6) is obtained independently of other 
equations for the situations considered in this paper. The cycle of iteration for the 
solution of the remaining equations consists of 

(a) calculation of new vorticity boundary conditions from the current velocity 
values; 

(b) computations of new values of the vorticity 5 at the interior points from 
the appropriate finite-difference equation; 

(c) calculation of new vector potential boundary conditions; 

(d) computation of new values of the vector potential, A; 

(e) calculation of new velocity components from the current scalar and vector 
potentials. 

For the components of the vector potential, A, and the scalar potential, over- 
relaxation was used for the iteration and the relaxation parameters used lie between 
1.4 and 1.7. The use of underrelaxation was necessary for the solution of the vorticity 
equations. The underrelaxation parameter decreases with increase in the Reynolds 
number. It was not possible to obtain a useful mathematical formula for the relation- 
ship between Re and this underrelaxation parameter, and it was left to experience 
to set it at an appropriate value, usually between 0.25 and 0.75. 

The accuracy of this method greatly depends on the accurate solution of the Laplace 
equation since this represents the continuity equation. It was therefore found necessary 
to let 

/ @” - P-1 1 < 5 x 10-G 

where cPn denotes a value of @ in the nth cycle of iteration. In arriving at the conditions 
given above it was observed that the rate of convergence is very slow, perhaps this is 
due to the nature of the boundary conditions imposed on the variable @. 

All the calculations performed in this paper used either the University of Sheffield 
1907 ICL computer or, for the bigger problems, the University of Manchester 
Regional computer, CDC 7600. 
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5. APPLICATION TO A TWO-DIMENSIONAL FLOW 

The method when applied to standard two-dimensional problems, for example the 
entrance length between parallel plates, gave results that agree satisfactorily with 
other methods. It was, therefore, applied to a more complicated geometry to provide 
a more severe test. 

The method is applied to the solution of a flow in a plane groove and the region of 
integration is as shown in Fig. 4. At the inlet the velocity is assumed constant while a 
parabolic profile is assumed at the outlet such that 

w = 1, u=o for 2 = 0, O<x<l (5.1) 

and 

w = 6(x - x2) Cw(0),‘2w(z,), 24 =Oforz =z3, 0 <x d 1, (5.2) 

where &(O) and &(z3) are the sums of the normal velocities at z = 0 and z = z8, 
respectively. The ratio Bv(O)/Ziu(z,) is used to conform with the condition in (2.7). 
This is necessary since the finite-difference method chosen imposes an integration 
procedure for the integrals in (2.7) and the ratio corrects small numerical errors 
in the integration method. 

FIG. 4. Schematic drawing of the plane groove geometry with Ozl = J, Oz, = 2, Or, = 4. 

Some of the data obtained from the plane groove problem with Re = 50 are 
tabulated in Tables I and II for comparison between the stream function-vorticity 
method and the vector potential method. 

These results show a reasonable agreement, although it should be noted that the 
problem was solved with different mesh lengths in each approach. With the stream 
function-vorticity method a 41 x 41 mesh point system was used with dx = 0.05 
and dz = 0.1, while a 21 x 41 mesh point system was used for the vector potential 
method with dx = dz = 0.1. This choice makes some of the axial velocity points 
coincide in the two systems for comparison purposes. The difference in the mesh 
lengths may account for the slight differences in the tabulated results, since a decrease 
in the mesh lengths will improve the accuracy. 
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TABLE I 

Numerical Data for the Axial Velocity, w, in the Solution of a Flow Problem in a 
Plane Groove, Re = 50” 

z 

x 0.00 0.10 0.20 0.30 1.10 1.50 1.90 2.30 2.80 3.40 4.00 

0.25 
1.000 1.052 1.119 1.161 1.076 1.018 1.025 1.076 1.118 1.129 1.128 SVM 

1.000 1.048 1.118 1.162 1.090 1.041 1.043 1.083 1.118 1.126 1.121 VPM 

1.000 0.818 0.643 0.530 0.497 0.590 0.501 0.351 0.290 0.283 0.283 SVM 
0.95 

1.000 0.839 0.651 0.521 0.468 0.571 0.542 0.337 0.287 0.283 0.283 VPM 

(1 SVM = results with stream function vorticity method dx = 0.05, dz = 0.1. VPM = results 
with vector potential method dx = dz = 0.1. 

TABLE II 

Numerical Data for the Axial Velocity, w, in the Solution of 
Flow Problem in a Plane Groove, Re = 5W 

0.05 

0.15 

0.25 

0.45 

0.65 

0.85 

1.05 

1.25 

1.45 

1.65 

1.85 

1.95 

0.258 

0.697 

1.018 

1.306 

1.252 

0.873 

0.349 

0.0563 

-0.0371 

-0.0452 

-0.0266 

-0.0108 

SVM 

0.262 

0.711 

1.041 

1.340 

1.284 

0.872 

0.309 

0.0253 

-0.0533 

-0.0511 

-0.0279 

-0.0114 

VPM 

a SVM and VPM are as in Table I. 
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A typical computer time for the stream function-vorticity method was about 
500 seconds on ICL 1907 (roughly equivalent to 10 seconds on CDC 7600) starting 
from zero initial values. For the vector potential method a similar time was used 
once the scalar potential had been calculated. The solution of the Laplace equation 
for @ with Neumann conditions round the whole boundary was found to be extremely 
slow and to take more or less the same computer time as the rest of the iteration cycle. 
However for the same configuration once 0 is known it can be used for all Re. 

6. THREE-DIMENSIONAL CALCULATIONS 

One of the difficulties in three-dimensional work is that suitable theoretical and 
experimental data is only just becoming available to provide a check on the accuracy 
and applicability of a method. For the standard problem of the entrance region into 
a square duct there is sufficient data for useful comparisons to be made. 

A detailed comparison of some results has already been made with the present 
method by Roscoe [lo]. He develops and describes a primitive variable method of 
his own and then compares his results with those obtained from the program used 
in this paper. He studied the development of the flow, at Re = 1.5, in a square duct 
from a step function inlet profile; on one-half of the duct the inlet velocity is 1 and 
on the other half it is 2. His general conclusion is that there is excellent agreement 
between the two methods on the flow development along the duct; across the section 
of the duct the quantitative agreement is good for low-value velocities and moderate 
for high values of velocity. Typical computer times for this problem are 5 minutes 
and 11 minutes on a CDC 7600 for Roscoe’s and the present program, respectively, 
starting from initial values of zero for all variables. As with all iterative methods 
much faster times can be achieved with a good first guess, for instance, the results 
from the nearest available case. 

A major limitation on the work is the storage capacity of computers. A 
15 x 15 x 15 mesh tests the limits of a computer, while experience in two dimensions 
suggests that good quantitative accuracy would require a 30 x 30 x 30 mesh. Such 
a size is beyond even the largest machines. However the work already performed 
suggests that comparatively coarse meshes give useful qualitative results and 
encouragement that meaningful and interesting work can be performed on present 
day machines in computer times of 5-10 minutes per run. 

Associated with three-dimensional calculations is the problem of how to reduce 
large amounts of computed data into an easily assimilated form. In two dimensions 
it is easy to draw and interpret stream function contours but in three dimensions the 
contours of scalar or vector potential are neither easy to draw nor to interpret. It is 
desirable to present the vector velocity V = (u, a, W) over the whole three-dimensional 
mesh. In an attempt to give an impression of the three-dimensional nature of the flows, 
perspective drawings of the configuration are presented with V given on particular 
planes. 
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7. FLOW IN A SQUARE DUCT 

The cotiguration studied here is the flow in a square duct defined by 0 < x < 1, 
o~yyl,o<z~z,. 

At the inlet z = 0, a uniform inlet profile is assumed so that 

u=v=o, w = 1, @, = -1, 
A, = A, = 3A3/az = 0, & = -avjaz, t2 = aulaz, 5, = 0. 

At the outlet z = z1 , it is assumed that the flow has reached its fully developed 
profile, so that 

u=v=o, w = w, ) az: = ---WI, 
A, = A2 = aA,/az = 0, a&la.2 = atalaz = t3 = 0, 

and W, is given by 

n-2 
WI = - 

4 i m,nsg,S.. . . 
sin rnrx sin nrry 
mn(m’ + n”) i,.,=Z,... . . m2n2(J + n2J i ’ (7.1) 

see for instance Han [l I]. 
On the solid boundaries x = 0, 1, y = 0, 1, the conditions are taken directly from 

Sections 2 and 3. 
The major problem in the computation is the solution of the Laplace equation for 

the scalar potential 0. The difficulty is created by the Neumann boundary conditions 
round the whole of the boundary. The final difference equations for @ take the form 
Ax = b, where the sum of the rows of the matrix A are zero. Unfortunately the sum 
of the elements of b are not identically zero because of small numerical errors in the 
difference scheme used. The W, defined in (7.1) is modified as in (5.2) to ensure that 
the amount of fluid entering is the same as that leaving. The correction was found 
to be necessary since significant errors propagated into the solution without it. This 
problem proved to be more acute in three-dimensional calculations than in two 
dimensions. Although the convergence was slow, a point SOR method converged to 
what is effectively the inviscid, it-rotational solution to the problem. Viscous and 
rotational effects were incorporated in the remaining iteration cycle described in 
Section 4. 

Results were obtained for Re = 1, 50, 100. Typically for the case Re = 50 a 
13 x 13 x 32 mesh was used with dx = d y = l/11 and dz = 6. Starting with an 
initial guess obtained by interpolating between the inlet and outlet (where possible) 
this case, including the scalar potential calculation, took 166 seconds on CDC 7600. 

Other theoretical calculations found for this problem use some approximate 
equations, usually the boundary layer equations, for example Han [I 11, Briley [12]. 
These solutions cannot be expected to be accurate near the duct entrance where there 
is a strong viscous, inviscid core interaction. The major experimental work was 
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performed by Goldstein and Kreid [13]. Again in experimental work it is difficult 
to reproduce the sharply singular inlet profiles used in the theoretical calculations 
so that comparisons very close to the inlet are not particularly reliable. 

The major parameter calculated and measured in experiments is the entrance 
length, delined as the distance down the duct required for the flow to reach 99 % of 
fully developed flow values. For the three cases Re = 1, 50, 100 the values obtained 
by the present analysis were z/Re = 0.742,0.087,0.086, respectively. As with the 
corresponding two-dimensional problem, a more or less steady value of z/Re is 
obtained for Re greater than about 50. Indeed when nondimensional quantities are 
plotted against z/Re there is negligible change above Re about 50 until unsteady or 
turbulent levels are approached. Han’s value for the entrance length is z/Re = 0.0752 
and is independent of Re, while Goldstein and Kreid give a value of z/Re = 0.090 
for the higher Re; they comment however on the difficulty of finding the intersection 
of a straight line and their almost parallel experimental curve. These values should be 
compared with the value of z/Re = 0.0099 for the two-dimensional flow between 
parallel plates. Thus it can be seen that the error in using a two-dimensional value for 
the entrance length is significant, the three-dimensional length being about eight times 
greater. It should also be noted that the fully developed center line axial velocities 
are 1.50 and 2.096 in the two- and three-dimensional cases, respectively, again pointing 
to the difficulties of assuming two-dimensional values. 

In Fig. 5 the axial component (w) of the velocity on the center line of the duct is 

FIG. 5. Axial component of the centerline velocity plotted against z/Re, for flow in a square duct. 

I I I I I I I I I 

2.0 - 

present calculation 

zlRe 

plotted against z/Re. Differences close to the entrance are to be expected from the 
discussion above, but for z/Re > 0.02 good agreement is obtained. The experimental 
points are not plotted but lie very close to the present results, see [12]. The results of 
Han [I l] are everywhere a fraction on the high side. The rather slower development 
of the flow close to the entrance obtained from the present calculations was to be 
expected since this region is treated more accurately. The results are similar to those 
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obtained for the corresponding two-dimensional case. The outer walls slow down the 
uniform inlet flow and to compensate, a rather faster flow develops a little way in 
from the boundaries. After a short distance down the duct the axial component of the 
center line velocity catches up and eventually has the maximum velocity. Then the 
comparison with the boundary layer solution becomes valid. 

8. FLOW IN A SQUARE DUCT WITH A RECESS ON ONE WALL 

The region of the flow is illustrated in Fig. 6. The problem provides an interesting 
application of the method to a situation of practical importance. Such configurations 
occur in many fluid handling devices. At high enough velocities, eddies are shed from 
the lips of the recess and these can cause excessive noise. The eddy shedding is time 
dependent and cannot be studied by the present steady calculations but the steady 
region up to shedding speeds can be treated. 

x 

0 

FIG. 6. Schematic drawing of the region of flow for cavity problem. 

The boundary conditions on the solid walls are treated similarly to those of the 
previous section and the inlet and outlet conditions are precisely those of Section 7. 
The additional difficulty is the reentrant lines. The only component of the vorticity 
required on these lines is E, = au/az - awlax and the method of treatment was 
discussed at the end of Section 3 and illustrated in Fig. 3. 

The same geometry was studied experimentally by Lewis [14]. He used a constant 
Re N 4500 and varied the depth/chord ratio (d/c). This Re is rather high so that 
detailed quantitative comparisons with the present calculations are not given. The 
results in the present case are for Re = 1, 50, 100 and 500 with d/c = 0.5, 1, 1.5, 2. 
Typically for d/c = 1 an 18 x 10 x 38 mesh was used with dx = dy = dz = 0.125. 
For the higher Re the entrance length is well beyond the end of the duct but it was 
impractical computationally to make the duct any longer. The imposed fully developed 
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I 

FIG. 7. Velocity vector distribution in the cavity with Re = 50 and depth/chord ratio equal to 1, 

FIG. 8. Velocity vector distribution in plane (y = 0.5) in the cavity with depth/chord ratio 
equal to 1. In 4(a) Re 50 and Re = 1 in 4(b). 
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FIG. 9. Vortex flow pattern at depth/chord ratio equal to 1. (a) Re = 1, (b) Re = 50, (c) Re = 
100, (d) Re = 500. 
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flow at the exit must have some effect on the mainstream flow but it would not be 
expected to affect the flow in the cavity too much. 

The flow in the cavity is weak and difficult to illustrate. However, in Fig. 7 vectors 
proportional to the velocity at a mesh of points in two planes of the cavity are plotted. 
It shows the complicated three-dimensional nature of the flow. In Fig. 8 slices through 
the center line of the duct are taken and the velocities are plotted to compare the effect 
of Re. 

A useful concept used by Lewis to simplify the plots is to locate the center of the 
vortex. On each plane y = constant, the center of the vortex is found and these are 
then plotted on a perspective diagram. With d/c = 1 this vortex center is shown in 
Fig. 9 for Re = 1, 50, 100, 500. For Re = I,50 the vortex center is U-shaped 
while for Re = 100 it is on the point of changing to a W-shaped vortex which is 
clearly seen for the case Re = 500. In all cases the vortex center is almost planar 
with the plane rotating through about a right angle as Re increases. The stagnation 
point in the cavity moves downstream as Re increases and is shown in Fig. 10. 
Extremely weak secondary eddies are observed in the corners of the recess but are too 
small to show up clearly in the figures. 

r - ~- RI?=50 

-.~ RezlOO 

FIG. 10. Distribution of the stagnation points with varying Reynolds number. Depth/chord 
ratio is 1. 

In order to study the effect of changes of geometry the case Re = 50 was chosen 
and d/c took values 0.5, 1, 1.5, 2.0. The vortex filament for d/c = 1 is illustrated in 
Fig. 9b while the cases d/c = 0.5, 2.0 are shown in Fig. 11; the case d/c = 1.5 is not 
given. For d/c = 0.5 the situation seems to be on the point of changing to a U-shaped 
vortex filament, while for larger values the U becomes more pronounced and has a 
progressively flatter base. The base becomes almost a straight line nearer to the 
midplane as d/c increases. A very weak secondary vortex may be seen in Fig. 1 lb in 
the bottom corner of the cavity; it is just strong enough to be shown. It appears that 
for the largest values of d/c two-dimensional slices parallel to the flow direction should 
give reasonable agreement in the cavity. 
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FIG. 11. Vortex flow pattern with Re = 50. (a) Depth/chord ratio = 0.5; (b) depth/chord 
ratio = 2. 

In experiments, Lewis [14] worked with water at the single inlet speed of 15 ft/sec 
and a 4-inch square entrance. Thus Re N 4500 and is very much higher than those 
used above. It was not possible to get convergence of the theoretical calculations 
within reasonable computing times for Re much greater than the value of 500 used. 

For d/c between 0.25 and 0.8 a U-vortex was observed by Lewis but the plane of the 
U could have two orientations both apparently stable. At d/c = 0.8 an abrupt change 
to a W-vortex was observed. The plane of W was more or less in the diagonal plane of 
the recess from the,upstream lip. As d/c increased to about 1.25 the Wvortex persisted 
with the plane of the vortex rotating through a right angle to the opposite diagonal 
plane from the downstream lip. Above this value of d/c the flow was reported to be 
chaotic. 

Although detailed comparisons are not possible it should be noted that both the 
present calculations and Lewis’ experiments show similar features. They both show 
the complicated three-dimensional nature of the flow. In each case U- and W-vortices 
occur and are almost planar. The planes of the vortices also rotate with changes of 
either geometry or Re. These similarities give considerable encouragement that work 
on three-dimensional flows is both necessary and fruitful. 
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